Successful Percutaneous Intervention for Ostial Stenosis of Left Internal Mammary Arterial Graft

Efe Edem, Saadet Demirtaş, Sabiye Yılmaz, Yusuf Can, Harun Kılıç, Ramazan Akdemir, Hüseyin Gündüz
Sakarya University Faculty of Medicine, Department of Cardiology, Sakarya, Turkey

ABSTRACT

Left internal mammary artery (LIMA) graft is the commonly preferred graft for bypass surgery and is particularly anastomosed to the left anterior descending artery. Stenosis of this graft frequently develops in the distal anastomosis site or within the distal native vessel after surgery, whereas it rarely develops in the ostial site. The pathophysiology of stenosis in the ostial site remains unclear. Percutaneous stenting of ostial lesions has rarely been reported in literature. We believe that such percutaneous transluminal stenting is appropriate for ostial lesions of LIMA grafts.

Key Words: Percutaneous transluminal angioplasty; coronary artery bypass; stent

INTRODUCTION

LIMA is the preferred graft for bypass surgery and is generally anastomosed to the left anterior descending (LAD) artery. LIMA grafts usually have long-term patency (1). Stenosis of this graft frequently develops in the distal anastomosis site or within the distal native vessel (2,3). Ostial stenosis of LIMA grafts is extremely rare. Percutaneous stenting of ostial lesions of the LIMA has rarely been reported (4,5).

CASE REPORT

An 80-year-old female was admitted to our clinic after she was diagnosed with non-ST elevation myocardial infarction. She had a history of coronary artery graft bypass surgery 13 years previously. Two saphenous vein grafts (SVGs) were anastomosed to the left circumflex artery (LCX) and right coronary artery (RCA), and LIMA graft was anastomosed to LAD artery. On admission, her blood pressure was 130/85 mmHg and pulse rate was 100/min. Electrocardiogram showed atrial fibrillation, ST depression, and T-wave inversions in precordial (V4–V6) and extremity derivations (DI-aVL, D III, and VF). There was a mild increase in cardiac enzyme levels. Transthoracic echocardiography revealed that ejection fraction was 35%, and anterior wall and mid and apical septal segments were akinetic. On the following day, coronary angiography was performed, which revealed severe stenosis in the distal left coronary artery, ostial intermediate (IM) artery, and ostial LCX and total occlusion of ostial LAD. There was also severe stenosis in the ostium of RCA. Sinus branch was well developed; severe stenosis of sinus branch was also observed. LCX and RCA-SVG anastomosis was present. Critical stenosis in the ostium of LIMA graft was revealed. We performed percutaneous coronary intervention to reveal lesions in the ostial stenosis of LIMA graft and IM artery.
Our approach was through the right femoral artery. A 6F Judkins right coronary guiding catheter was advanced to the aortic arch into the left subclavian artery. A 0.014-inch Soft J guidewire was placed in the LIMA. A distal protection device was not required because of the absence of thrombotic material at the site of lesion. We implanted a 3.0 × 15 mm zotarolimus-eluting coronary stent into the ostium of the LIMA at 16 atm (Figure 1). The final injection of LIMA showed TIMI grade III blood flow. Following the successful intervention of the LIMA, a 6F Judkins left coronary guiding catheter was advanced into the left coronary artery. A 0.014-inch Soft J guidewire was placed into the IM artery. Angioplasty of the distal left coronary and ostial IM arteries were performed with a 2.0 × 20 mm Hopor balloon at 14 atm, following which a sirolimus-eluting coronary stent at 16 atm was implanted, which had a size of 2.5 × 22 mm to cover both the distal left coronary and ostial IM arteries (Figure 2). The final injection of left coronary system showed TIMI grade III blood flow.

DISCUSSION

LIMA grafts have high patency rates(6). Most stenoses of LIMA grafts are located at the distal anastomosis site or within the distal native vessel. Ostial stenosis of LIMA grafts is very rare and its pathophysiology remains unclear(3-5). Different mechanisms have been suggested such as atherosclerosis subsequent to severe subclavian artery disease, trauma of the ostium due to prior angiography, and damage of the ostium during bypass surgery(7,8).

Different treatment strategies can be used for the treatment of stenosis in bypass grafts, including percutaneous balloon angioplasty, percutaneous stenting, and redo-bypass surgery. Angiographic evidence of recoil following balloon angioplasty was demonstrated in LIMA grafts. A histologic study showed that the vessel wall of IM artery has an elastic component(9). Therefore, balloon angioplasty alone may not be sufficient for the long-term patency of the vessel. Redo-bypass surgery clearly has high mortality and morbidity rates(10,11). However, the percutaneous stenting of ostial stenosis of LIMA grafts has rarely been reported.

Femoral artery is the traditionally preferred vascular access for percutaneous coronary interventions because it provides successful cannulations of coronary arteries and LIMA(12). Therefore, we preferred the femoral approach for LIMA intervention and for the subsequent coronary intervention. Angioplasty and stenting of the distal anastomotic lesions provide adequate results in LIMA grafts; however, data regarding angioplasty and stenting of the ostial lesions in LIMA grafts are insufficient(13-15). In addition, published data on the use of drug-eluting stents in the ostial lesions of the LIMA are also insufficient. Only one report has been published in which a drug eluting stent has been implanted in the ostial lesion of LIMA(16). In our case, drug eluting stent was successfully implanted in the ostial part of LIMA graft. Our patient was discharged 24 h after stent implantation and is currently under follow-up in our outpatient clinic.

We suggest that the percutaneous drug-eluting stent treatment of LIMA grafts using the femoral approach is the most appropriate treatment strategy for revascularization of severe ostial lesions of LIMA grafts.

REFERENCES


