ABSTRACT

Introduction: Copeptin is known to be increased in cardiac heart failure. The role of copeptin in patients with severe mitral regurgitation has not been assessed in patients with preserved ejection fraction. The objective of this study is to evaluate the role of severe mitral regurgitation caused by degenerative mitral disease in copeptin release.

Patients and Methods: 39 patients with degenerative mitral regurgitation (DMR group) and 30 control subjects (control group) were included in the study. The clinical and echocardiographic findings were recorded. Blood samples were obtained in 15 min before echocardiographic examination for determination of plasma copeptin. Global left ventricular longitudinal and circumferential strains were evaluated by applying 2D speckle-tracking imaging.

Results: There was no statistical difference among copeptin levels of all groups (median values are for DMR: 10.7 (9.0-17.1); control group: 13.2 (10.6-20.7; p= 0.42). GCSTR and GLSTR were significantly lower in the DMR group (-19.2 ± 5.5 vs. -23.8 ± 5.3; p= 0.002 and -17.1 ± 4.3 vs. -19.9 ± 2.4 p= 0.002 respectively). LA V (83.7 ± 38.8 vs. 34.1 ± 7.5 p= 0.0001), E/e' (9.6 ± 4.0 vs. 6.0 ± 1.4; p= 0.0001), and E/A (1.79 ± 0.5 vs. 0.9 ± 0.24 p= 0.0001) ratios were significantly higher in the DMR group.

Conclusion: Our study demonstrated that there is no significant change in serum copeptin concentrations in severe mitral regurgitation due to degenerative mitral disease. This can be attached to the filling changes of left atrium, atrial stretch receptors, and increased stroke volume.

Key Words: Copeptin; mitral regurgitation

Dejeneratif Mitral Hastalığa Bağlı İleri İleri Mitral Yetersizliğinde Kopeptin

ÖZET

Giriş: Kopeptinin kalp yetersizliğinde yükseldiği bilinmektedir. Korunmuş ejeksiyon fraksiyonlu ileri mitral yetersizliği olan hastalarda kopeptinin rolü bilinmemektedir. Çalışmanın amacı kopeptin salınımda dejeneratif mitral hastalığı bağlı ileri mitral yetersizliğinin rolünü değerlendirmektir.

Bulgular: Gruplar arasında kopeptin düzeylerini açıktan anlamış fark yoktu (median değerleri DMR: 10.7 (9.0-17.1); kontrol grub: 13.2 (10.6-20.7) (p= 0.42)). GCSTR ve GLSTR değerleri DMR grubunda kontrol grubuna göre daha düşük (-19.2 ± 5.5 vs. -23.8 ± 5.3; p= 0.002 ve -17.1 ± 4.3 vs. -19.9 ± 2.4 p= 0.002 sırasıyla). LA V (83.7 ± 38.8 vs. 34.1 ± 7.5 p= 0.0001), E/e' (9.6 ± 4.0 vs. 6.0 ± 1.4; p= 0.0001), ve E/A (1.79 ± 0.5 vs. 0.9 ± 0.24 p= 0.0001) oranları DMR grubunda anlamlı olarak yüksekti.

Sonuç: Çalışmanın amacı dejeneratif mitral hastalığı bağlı ileri mitral yetersizliğinde kontrol grubuna göre kopeptin düzeylerinde anlamı değişiklik olmadığını göstermiştir. Bu bulgu sol atrial dolum değişiklikleri, atrial stretch reseptörleri ve artmış stroke volum ile ilişkilidir.

Anahtar Kelimeler: Kopeptin; mitral yetersizlik

Correspondence

Alev Kılıçgedik
E-mail: akilicgedik@yahoo.com
Submitted: 08.11.2016
Accepted: 05.12.2016
© Copyright 2017 by Koşuyolu Heart Journal.
Available on-line at www.kosuyoluheartjournal.com
INTRODUCTION

Neurohormones have been used in the setting of a variety of cardiovascular conditions because of their diagnostic and prognostic values. Vasopressin, an antidiuretic and vasoconstricting hormone, is synthesized in the hypothalamus and excreted by the posterior pituitary gland. Vasopressin has three receptors V$_1_a$, V$_1_b$, and V$_2$. Via V$_1_a$ receptors, vasopressin causes vasoconstriction and cardiac remodeling by increasing afterload, decreasing systemic vascular resistance, and increasing cardiac output (1). V$_2$ receptor is responsible for the antidiuretic effect of vasopressin, which leads to increased preload and consequently, increased left ventricular (LV) filling (2,3). Vasopressin also promotes myocardial fibrosis by stimulating cardiac fibroblasts (2-4). Vasopressin concentration cannot be determined readily because of it is unstable and rapidly cleared (5). Copeptin is a 39-aminoacid-long C-terminal segment of the peptide precursor molecule to vasopressin. It is produced and excreted by the posterior pituitary gland. Vasopressin has pharmacological and prognostic values. Vasopressin, an antidiuretic and vasoconstricting hormone, is synthesized in the hypothalamus and excreted by the posterior pituitary gland. Vasopressin also promotes myocardial fibrosis by stimulating cardiac fibroblasts (2-4). Vasopressin concentration cannot be determined readily because of it is unstable and rapidly cleared (5). Copeptin is a 39-aminoacid-long C-terminal segment of the peptide precursor molecule to vasopressin. It is produced and secreted in equimolar amount. It is more stable and easy to measure (5). Copeptin has been shown to be increased in cardiovascular diseases, especially in acute coronary syndromes and CHF. Copeptin is also associated with ventricular remodeling because of changes in LV ejection fraction (LVEF) and volumes (6). It was found to be the strongest predictor of mortality especially in patients NYHA classes II and III (2,4,7). Although vasopressin has beneficial effects in short term in CHF, it may have deleterious effects in the long term owing to vasoconstriction, decrease in cardiac output and contractility (8). Not only in heart failure and coronary syndromes but copeptin also has been shown increased in patients with mitral and aortic stenosis (AS) in a few studies. In one study, copeptin was found a novel biomarker of degenerative AS in patients with preserved LVEF independent of the coexisting coronary artery disease owing to ventricular remodeling and changes in LV volume and LVEF (3). In another study copeptin was found significantly increased in patients with mitral stenosis (MS) and they also found that after mitral balloon valvuloplasty copeptin levels decreased dramatically (9). In severe mitral regurgitation (MR), there is a different physiopathology on atrial filling and cardiac output. The atrial walls have atrial volume receptors that respond to distention rather than pressure which is called atrial stretch receptors (10). These receptors have substantial effect on the vasopressin system. The objective of this study is to evaluate and compare the role of severe MR in release of copeptin in patients with degenerative mitral regurgitation (DMR).

PATIENTS and METHODS

The study included 39 patients with severe MR who were referred to Kartal Kosuyolu Heart Education and Research Hospital between January 2014 and April 2015 for echocardiographic examination. Thirty subjects with no MR and normal LVEF (control group) were enrolled as the control group. The NYHA classes of both the groups were II and III. Patients who had DMR (mitral valve prolapse, chordae tendineae rupture) and normal LVEF (> 60%), were enrolled in the study prospectively. The patients who had organic MR caused by other reasons including rheumatic or senile degenerative heart valve disease, mitral annular calcification, infective endocarditis as well as those with decreased LVEF were excluded from the study. The local ethics committee approved this study.

Blood samples were obtained in 15 min before echocardiographic examination for determination of plasma copeptin. They were collected using pyrogen-free tubes containing EDTA and centrifuged at 5000 r. p. m. for 10 min. Plasma was stored at -20°C until analysis. The plasma samples are analyzed with human copeptin Eliza kit (SHANGHAI YEHUA Biological technology Co, Ltd, Shanghai China). The assay range was 0.05 ng/mL-20 ng/mL.

Echocardiography

Standard echocardiographic evaluations were performed using a 1-5-MHz X5-1 transducer (iE33, Philips Healthcare, Inc., Andover, MA). Patients were examined in the left lateral position. Measurements were averaged over three consecutive heart cycles. All standard 2D transthoracic echocardiographic images from parasternal long-axis, short-axis, apical four-chamber, three-chamber, and two-chamber views. Color Doppler and tissue Doppler images were stored in cine loop format triggered to the QRS complex. The LV diastolic and systolic diameters were measured using M-mode or 2D echocardiography. LVEF was calculated according to Simpson’s formula employing a two-dimensional image of the ventricular chamber during systole and diastole in the four-chamber and two-chamber apical views.

Mitral inflow velocities are measured by PW-Doppler where sample volume is placed at the tips of the mitral valve in LV. E and A wave velocities were recorded. The mitral annular velocities are measured by pulsed-wave tissue Doppler imaging (PW-TDI). PW-TDI sample volume is placed at the level of the lateral and septal mitral annulus. Septal and lateral E’ and A’ wave velocities were recorded. E/E’ ratio for septal and lateral mitral annulus and E/A ratio were calculated.

The quantification of MR was assessed as recommended (11). The proximal isovelocity surface area (PISA) is visualized from apical four-chamber view. The radius of the PISA is measured at mid systole using the first aliasing. Regurgitant volume (RV) and effective orifice area (EROA) are obtained using the standard formula. For DMR, RV > 60 mL/beat or EROA > 0.4 cm2 were considered as severe MR (14). The configuration of mitral leaflets was assessed from the parasternal long-axis and apical views. In addition to 2D transthoracic echocardiographic views, all patients with severe DMR underwent 2D and
3D transesophageal echocardiographic examination, which provided precise information on type and extent of anatomical lesions, mechanism of regurgitation, etiology, and reparability of the valve. Bicommissural mitral annular diameter was measured by conventional 2D transesophageal echocardiography at 60-75° and anterior-posterior diameter was measured at 120° in the parasternal long-axis view. Anterior and posterior leaflet lengths were measured in diastole at 120°.

Tricuspid annular plane systolic excursion in the apical four-chamber view and the tricuspid annulus peak systolic velocity (TAPSV) with TDI were used to evaluate RV function.

LV circumferential and longitudinal strain parameters (global circumferential LV strain (GCSTR), global longitudinal LV strain (GLSTR)) was evaluated using 2D speckle-tracking imaging. Global circumferential strain was assessed by applying 2D speckle-tracking imaging to the parasternal short-axis views of LV. The longitudinal peak systolic strain was assessed by applying 2D speckle-tracking imaging to the apical four-chamber, three-chamber, and two-chamber views. The interpretation of echocardiograms was blinded to copeptin levels.

Statistical Analysis
Data management and analysis were performed using IBM SPSS Statistics 16.0 (SPSS, Chicago, IL) software. Data are presented as mean ± standard deviation for continuous variables and as percentages for categorical variables. Normal distribution was analyzed using the Kolmogorov-Smirnov test. Categorical variables were compared using chi-square or Fisher’s exact test as appropriate. One-way ANOVA with Tukey post hoc was used to compare continuous variables among the groups; when homogeneity of variance was not present, the Kruskal-Wallis test was used for nonparametric independent samples. For nonparametric independent samples for intergroup comparisons, Mann-Whitney test were performed. Correlations were tested by Pearson or Spearman’s correlation tests, as appropriate. A P value of < 0.05 was considered statistically significant.

RESULTS
The clinical, echocardiographic and laboratory characteristics of patients are shown in Table 1. Age and gender were not statistically different in all groups (P = 0.96; P = 0.36, respectively). Sodium levels (P = 0.42) and also systolic and diastolic blood pressure values (P = 0.54; P = 0.06, respectively) were in normal ranges and there was no statistical difference among all groups. Atrial fibrillation incidence was 5.1% in the DMR group and 0% in the control group.

Left atrial (LA) volumes were statistically different between the DMR and control groups (P = 0.0001). There was no statistical difference among copeptin levels of two groups (median values are for DMR: 10.7 (9.0-17.1) control: 13.2 (10.6-20.7); P = 0.42).

Table 1. Baseline characteristics of mean and median values of clinical and echocardiographic parameters

<table>
<thead>
<tr>
<th>Groups</th>
<th>DMR (n= 39)</th>
<th>Control (n= 30)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>52.5 ± 15.1</td>
<td>52.6 ± 9.3</td>
<td>0.96</td>
</tr>
<tr>
<td>Gender</td>
<td>9 (23.1%)</td>
<td>10 (33.3%)</td>
<td>0.36</td>
</tr>
<tr>
<td>Copeptin (ng/mL)</td>
<td>10.7 (9.0-17.1)</td>
<td>13.2 (10.6-20.7)</td>
<td>0.42</td>
</tr>
<tr>
<td>Urea (mg/dL)</td>
<td>31.0 (25-46)</td>
<td>31 (26.8-36)</td>
<td>0.062</td>
</tr>
<tr>
<td>Creatinin (mg/dL)</td>
<td>0.86 (0.68-1.0)</td>
<td>0.8 (0.7-0.9)</td>
<td>0.42</td>
</tr>
<tr>
<td>Sodium (mmol/L)</td>
<td>139 ± 2</td>
<td>139.3 ± 1.6</td>
<td>0.42</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>128.8 ± 6.8</td>
<td>127.6 ± 9.1</td>
<td>0.54</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>80 (75-80)</td>
<td>80 (75-80)</td>
<td>0.06</td>
</tr>
<tr>
<td>AF</td>
<td>2 (5.1 %)</td>
<td>0</td>
<td>0.0001</td>
</tr>
<tr>
<td>LA (cm)</td>
<td>4.18 ± 0.73</td>
<td>3.31 ± 0.37</td>
<td>0.0001</td>
</tr>
<tr>
<td>LVESD (cm)</td>
<td>3.56 ± 0.67</td>
<td>2.89 ± 0.40</td>
<td>0.0001</td>
</tr>
<tr>
<td>LVEDD (cm)</td>
<td>5.80 ± 0.74</td>
<td>4.71 ± 0.41</td>
<td>0.0001</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>64.5 ± 2.02</td>
<td>65.1 ± 1.94</td>
<td>0.22</td>
</tr>
<tr>
<td>E (cm/sn)</td>
<td>96.2 ± 25.5</td>
<td>65.1 ± 16.6</td>
<td>0.0001</td>
</tr>
<tr>
<td>A (cm/sn)</td>
<td>50 (50-60)</td>
<td>70 (60-80)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Esep (cm/sn)</td>
<td>9.3 ± 3.59</td>
<td>10.1 ± 3.49</td>
<td>0.47</td>
</tr>
<tr>
<td>Elat (cm/sn)</td>
<td>11.5 ± 3.95</td>
<td>11.0 ± 3.5</td>
<td>0.61</td>
</tr>
<tr>
<td>E/e' sep</td>
<td>9.2 (7.5-13.6)</td>
<td>6.6 (5.0-9.0)</td>
<td>0.085</td>
</tr>
<tr>
<td>E/e' lat</td>
<td>9.6 ± 4.0</td>
<td>6.0 ± 1.4</td>
<td>0.0001</td>
</tr>
<tr>
<td>E/A ratio</td>
<td>1.79 ± 0.5</td>
<td>0.9 ± 0.24</td>
<td>0.0001</td>
</tr>
<tr>
<td>LAV</td>
<td>83.7 ± 38.8</td>
<td>34.1 ± 7.5</td>
<td>0.0001</td>
</tr>
<tr>
<td>TAPSE (mm)</td>
<td>25 (22-31)</td>
<td>25 (20.5-28.5)</td>
<td>0.92</td>
</tr>
<tr>
<td>TAPSV (cm/au)</td>
<td>15.5 (13-18)</td>
<td>15 (13-17)</td>
<td>0.71</td>
</tr>
<tr>
<td>EROA (cm²)</td>
<td>68.75 ± 27.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PISA (cm)</td>
<td>1.31 ± 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV (mL)</td>
<td>95.97 ± 30.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCSTR (%)</td>
<td>-19.2 ± 5.5</td>
<td>-23.8 ± 5.3</td>
<td>0.002</td>
</tr>
<tr>
<td>GLSTR (%)</td>
<td>-17.1 ± 4.3</td>
<td>-19.9 ± 2.4</td>
<td>0.002</td>
</tr>
</tbody>
</table>

LA, LVEDD, and LVESD were significantly higher in the DMR group. Although there was no statistical difference in LVEF (P = 0.22), GCSTR and GLSTR were significantly lower in the DMR group (P = 0.002 and P = 0.002 respectively). LAV, E/e’, and E/A ratios were significantly higher in DMR group (P = 0.0001 for each value).
Our study demonstrated that copeptin levels are similar between control and severe DMR group. As known from several studies copeptin levels are increased in several cardiac conditions. But in our patient group, we could not find a trend toward an increase in copeptin levels. In our patient group, NYHA functional classes were II and III. In a study, copeptin was found independently related to mortality in each symptomatic stage of heart failure, but NYHA functional classes II and III were the most compelling. Patients with heart failure generally have low osmolality and low sodium levels, which cause increased copeptin levels. An inverse relationship between blood pressure and copeptin has also been established. However, in our patients, sodium levels and blood pressure values were in normal ranges. In addition, copeptin may not always demonstrate a direct correlation with conventional parameters of cardiac status largely because of it is not only a marker of cardiac status. There are some other conditions that affect the release of copeptin.

In patients with AS, conditions such as increased LV systolic pressure, decreased coronary flow, subendocardial ischemia, decreased stroke volume lead to an elevation of copeptin levels. In patients with MS, conditions such as decreased preload and stroke volume lead to increase in copeptin levels. In patients with MR, there is a different physiopathology unlike patients with AS and MS and effect on copeptin release seen in this present study.

The increased volume of blood that enters the left atrium (LA) during ventricular systole is responsible for increased LA pressure in severe MR. In long-standing or chronic MR, LA adapts to the larger volume by dilating, which increases its compliance. In the DMR group, the regurgitant flow into LA increases LA pressure, leading to atrial enlargement and increased compliance. In addition, through the decreased afterload, ventricular overcome the volume overload by increasing the total cardiac output. Increases in preload, wall tension, diastolic volume and stroke volume occur. On the other hand, the atrial walls has atrial volume receptors that respond to distention rather than pressure, which is called atrial type B fibers and as well as atrial stretch receptors. These receptors are considered to respond only to the changes in distention of the atrium, which is dependent to changes in filling. Suppression of activities in the neurosecretory cells is produced only by LA stretch but not the right. As far as we know, in an experimental study, the distention of LA with an indwelling balloon produce increased activity of these receptors and diuresis. Therefore, LA distention, like “sudden stretch” of mitral regurgitant volume in severe MR, may lead to activation of these receptors and decrease the release of copeptin. Besides a drop in atrial filling cause a release of copeptin. Some experimental studies showed that there was a better relationship between the level of fiber activity (afferent fibers from receptors affected by atrial distention) and the rate of rise or pulse pressure of the “v” wave than mean atrial pressure. In the DMR group, the presence of an excessive volume load that cause LA enlargement and increased LA pressure can lead to “sudden stretch” of LA and thus activates this volume receptors and suppress the release of copeptin in the presence of normal cardiac output and LV function. However, the release of copeptin is primarily regulated by a change in osmolality and less importantly by input from LA volume receptors. This may be the reason why our severe DMR group copeptin levels seems lower than the control group although it is not statistically significant. But it is suggested that the filling volume of atria, which is in a relation to the circulating and thoracic blood volume could be considered together with the information from both stretch and pressure receptors. There are three mechanisms that can explain increased levels of copeptin in heart failure patients: decreased cardiac output, hyponatremia and increased angiotensin II, which is a costimulator of copeptin. In our patient group, LV function assessed by global circumferential and longitudinal strain imaging was decreased compared to the control group although LVEF was not significantly different between groups. But cardiac outputs were normal and no hyponatremia was determined. In addition, although the markers of LV diastolic function were higher in the DMR group, there was no correlation between copeptin and diastolic dysfunction markers. Hage et al. found that copeptin was elevated in heart failure patients with preserved ejection fraction but not correlated with markers of diastolic dysfunction.

Limitations

The major limitation of our study is the relatively low number of patients included. Our study included only patients with severe MR. There is no adequate comparable data between severe and mild or moderate MR. Novel biomarkers including NT-pro-BNP, pro-adrenomedullin and copeptin may correlate well with each other in certain conditions. We used copeptin as a single biomarker but there are some data suggest that copeptin as a single biomarker approach may oversimplify or overestimate influence of biomarkers in heart failure. Moreover, only patients with chronic severe MR were included in this study.

CONCLUSION

The present study demonstrated that there is no significant change in serum copeptin concentrations in severe MR due to degenerative mitral disease. This can be attached to the filling changes of LA, atrial stretch receptors and increased stroke volume. However, further studies are required to investigate the role of MR and copeptin response in patients with preserved LVEF.

CONFLICT of INTEREST

The author reported no conflict of interest related to this article.
AUTHORSHIP CONTRIBUTIONS

Concept/Design: AK
Analysis/Interpretation: AK, ASG, SE, AG, AY, GK, İAI, CK
Data Acquisition: AK, ASG, SE, AG, AY, GK
Writing: AK
Critical Revision: ASG, SE, AG, AY, GK, İAI, CK
Final Approval: All authors

REFERENCES